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Introduction

The hepatitis B virus (HBV) was first discovered as an 
infectious agent in the 1960s by Dr. Baruch Blumberg, 
who described the presence of what would later be 
named the HBV surface antigen (HBsAg) in the blood 
of patients with hepatitis (1). Blumberg's discovery 
subsequently led to the development of diagnostic 
screening tests and effective vaccines against HBV by 
targeting HBsAg, work for which he would later be 
awarded the 1976 Nobel Prize in Physiology or Medicine 
(2). As of 2019, the World Health Organization (WHO) 
estimates that approximately 1.5 million new HBV 
infections occur each year, with the highest burden of 
disease currently in the WHO Western Pacific Region 
and the WHO African Region (3). A fraction of adults 
(< 10%) with acute HBV infection will develop chronic 
hepatitis B (CHB), while acutely infected infants are at 
a much higher risk (~90%); a staggering 296 million 
individuals are estimated to be living with CHB (3,4). 
Despite the goals set by the WHO to decrease HBV-
related mortality by 65% from 2015 to 2030, global 
HBV-related mortality is projected to increase by 39% 
during this time (5,6). Many factors contribute to this 
increased mortality (recently reviewed (6)) including, 

for example, economic disparities in HBV distribution 
between and within countries, comorbidities and 
viral coinfections like hepatitis D virus and human 
immunodeficiency virus (HIV), and societal stigmas that 
add barriers to receiving HBV healthcare (6,7).
	 Currently approved strategies to prevent or inhibit 
HBV are highly effective, including the HBV vaccine 
(90–95% effective), as well as repurposed nucleos(t)
ide analogs (NUCs) from HIV reverse transcriptase 
(RT) inhibitors like tenofovir and lamivudine (3TC) 
(4,7,8). Although HBV is effectively inhibited by NUCs, 
caseation of antiviral therapy leads to unpredictable 
outcomes and often a rebound of viral load (9). Thus, the 
current standard of care for CHB is life-long treatment 
with NUCs. There is another approved class with curative 
potential, interferon-α or pegylated interferon-α (peg-
IFNα), but it is not well tolerated and suppresses chronic 
infection in only 30% of patients (10). Currently, CHB 
has no reliable cure. Therefore, direct-acting agents that 
target outside the polymerase, alone or in combination, 
are likely required to achieve HBV eradication (11).

The HBV replication cycle

The mature, infectious HBV virion is a 42 nm particle 
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comprised of a viral envelope with embedded HBsAg 
and contains the relaxed-circular DNA genome (rcDNA) 
that is covalently attached to the polymerase (P) and 
encapsulated by the assembled nucleocapsid core (12,13).
	 HBV belongs to the hepadnaviridae family of 
viruses, and as such HBV infects liver cells following 
HBsAg interactions with the sodium taurocholate 
cotransporting polypeptide (NTCP), a transmembrane 
protein specifically expressed in hepatocytes (14). 
The virus is internalized in an endosome, and the 
nucleocapsid is released into the cytoplasm by currently 
unresolved mechanisms (15). In infectious particles, 
the nucleocapsid is a T = 4 icosahedral core that is an 
assembly of the multimeric core protein (Cp), or HBV 
core antigen (HBcAg) (Figure 1). Once in the cytoplasm, 
the core is trafficked toward the nucleus to proceed 
through the nuclear pore complex (NPC) in an importin-
dependent fashion (12,16). Following nuclear entry, the 
partially double-stranded and partially single-stranded 
rcDNA with the covalently attached P protein triggers 
host cell DNA repair mechanisms. This inevitably leads 
to the formation of the covalently closed chromosomal 
DNA (cccDNA), an episome indistinguishable to the 
host from its own genome, functionally integrating itself 
into the cell (17,18).
	 The cccDNA genome is the template for multiple    
mRNA transcripts of varying size, one of which 
encodes the full pre-genomic RNA (pgRNA) that can 
be translated into HBcAg or HBeAg depending on the 
ORF used, and P (19-21). The HBV P protein is a large, 
multifunctional protein with Ribonuclease H (RNaseH), 
RT protein-priming, RNA-dependent DNA-polymerase 

(RdDP) and DNA-dependent DNA-polymerase (DdDP) 
activity (8,21). The interaction of P with pgRNA, 
specifically with the epsilon RNA stem loop, is required 
for encapsidation into assembling cores, which has fine-
tuned assembly kinetics to make infectious particles (22). 
The pgRNA serves as the template for RT when creating 
the rcDNA after encapsidation (21,23). In addition to 
the infectious virions, referred to as "Dane particles", 
infected cells excrete non-infectious soluble core 
antigens (HBeAg) and excrete HBsAg-coated subviral 
particles (SVP). These SVPs can contain viral mRNA, 
erroneous cellular mRNA or be entirely devoid of nucleic 
acid (24). The mRNA translated from cccDNA can be 
alternatively spliced, leading to production of small/
medium and large HBsAg mRNA. The HBsAg precursor 
proteins are translated at the endoplasmic reticulum 
(ER) membrane, at different initiation codons, and adopt 
various conformations to enable the HBV envelope to 
form and bud (12,19).

The core protein (Cp) of HBV

The largest transcript from the cccDNA encodes the 
full HBV genome, the pgRNA. In addition to being 
packaged into assembling virions, as discussed above, 
the pgRNA can be used as the mRNA for multiple HBV 
proteins. pgRNA encodes for P, as well as two in-frame 
initiation codons that translate precore (p25) or Cp (p21) 
(12,19,21). When translated starting at the second in-
frame initiation codon, Cp is cytosolically translated 
prior to its assembly into the HBV capsid core. Cp is a 
21 kDa protein with 183–185 amino acids, depending on 
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Figure 1. Structure of the hepatitis B Virus (HBV) capsid core. [Left] Rendition of released particles from HBV infection, 
including mature virions with assembled capsids (PDB: 6HTX) (96) and core protein (Cp) dimers (PDB: 6ECS) (97) as well as both 
non-infectious subviral particles and excreted HBV E Antigen (HBeAg, PDB: 3V6Z) (51). No full structure of HBV Surface Antigen 
(HBsAg) is deposited in the PDB; partial HBsAg (PDB: 7TUK) (98) and CD9 (PDB: 6K4J) (99) protein embedded in the default 
membrane structure from cellPAINT to represent the viral envelope (in grey). The mature capsid shown in blue and all other proteins 
in white. The P•pgRNA complex or P•rcDNA would be located inside the core. Made with cellPAINT (v2.0) (100). [Right] Two 
orientations of the HBV Capsid core (PDB: 6HTX) (96) with hexamers in cyan and pentamers in pink. One dimer of Cp dimers has 
the secondary structure shown with distinct colors in each Cp monomer to display protein·protein interactions. Made with ChimeraX 
(v1.5) (101).
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disorder, due in part to the presence of 16 positively 
charged Arg residues and 7 residues (6 Ser and 1 Thr) 
that can be phosphorylated in this 35–37 amino acid 
region (26-28,42) (Figure 2, C-E). These sequential 
Arg residues provide the nucleic acid binding functions 
of Cp that are needed for encapsulation of pgRNA 
during core assembly, as well as influencing rcDNA 
formation and Cp potentially being associated with 
nuclear cccDNA (17,23,27-29,41,43). The CpCTD 
additionally contains both nuclear localization signals 
(NLS) and nuclear export signals (NES) that are made 
of these sequential Arg residues (16). Further, the 
phosphorylation of CpCTD residues encode a complex 
regulatory system that influences many aspects of HBV 
replication, including cellular trafficking, disassembly 
at the nuclear pore complex and RNA encapsidation, 
which remains the target of ongoing investigations 
(27,31,32,44,45). For many years, the full-length Cp 
protein was challenging to recombinantly express and 
purify; truncated expression constructs made only of 
the CpNTD gave increased stability, and thus, many 
studies of Cp assembly have relied solely on the CpNTD. 
Now, bacterial codon-optimized expression vectors 
allow for the efficient production of full-length Cp in 
E. coli, especially helping in the translation of the Arg-
rich CpCTD (28,45,46). While the CpCTD is not required 
for capsid lattice assembly, it is required for creating 
infectious HBV virions (47).
	 Translation of the preCore (preC) begins at the 

the virus isolate. The N-terminal Domain of Cp (CpNTD) 
is responsible for capsid assembly and the C-terminal 
domain of Cp (CpCTD) is responsible for binding nucleic 
acid and signaling (13,25-29) (Figure 2A).
	 The CpNTD comprises residues 1–149 and, when 
expressed in E. coli, can assemble in vitro into particles 
indistinguishable from native HBV cores; however, 
the CpNTD could not assemble in mammalian cells or 
in vitro with rabbit reticulocyte lysate (29-33). This 
domain contains five α-helices (α1–α5), with α3 and 
α4 acting as the dimerization interface by making a 
4-helix bundle (4HB) in Cp•Cp dimers, and α1, α2, and 
α5 sit perpendicular to the 4HB making the interface 
for dimer-dimer interactions (Figure 2B). Following 
translation, Cp monomers will immediately dimerize 
at the hairpins made by the amphipathic, antiparallel 
α3 and α4, forming a 4HB, which protrudes out of 
assembled cores like a spike (Figure 2C) (25,29,30,34-
36). The 4HB is stabilized by a disulfide bond between 
the Cys61 in both monomers, but this linkage is 
not required for Cp assembly (21,37). Following 
dimerization, hydrophobic interactions between α5's 
and multiple contacts throughout Cp create dimer•dimer 
interactions to form the assembled capsid (36,38,39). 
The residues 140–149 are frequently referred to as a 
linker domain connecting CpNTD and CpCTD, and it has 
assembly-independent functions (40,41).
	 The CpCTD comprises residues 150–183 or 150–185 
depending on subtype, and is characterized by intrinsic 
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Figure 2. Structure and Characteristics of the HBV core protein (Cp). (A). Sequence and structural motifs in p25; colors 
to the right (UniProt: P0C6H5). Arrows indicate start codon sites, with the second being used to translate Cp and the first for 
preCore (preC). The site of the Signal Peptide (SP; brown) cleavage shown with the yellow triangle. Residues are colored 
by charges at pH 7.0 (42). (B). Two Cp Dimers (PDB: 6HTX) (96), one in gray and the other colored based on the sequence 
annotation in (A). Made with ChimeraX (101). (C). Shows the local hydropathy of the Cp, with the CpNTD hydrophobic helices 
for assembling the core. (D). Displays the local charge of the Cp, exemplifying the CpCTD having a characteristic basic charge 
for nucleic acid binding. (E). Predictions of intrinsic disorder by IUPred2 (> 0.5 disordered region; < 0.5 ordered region) (102), 
exemplifying the disordered nature of the CpCTD. A, C-E made with idpr v 1.8.0 (42).
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initiation codon upstream of the Cp initiation site and 
generates a precursor protein that contains a 29 residue 
N-terminal extension of the Cp, which contains a 
cotranslational ER localization signal (19,20). A segment 
of the preC N-terminus is processed inside the ER lumen, 
changing the protein from p25 to p22, and subsequent 
processing at the C-terminus into p17 prior to ER-Golgi–
mediated secretion (Figure 2A; yellow triangle) (48,49). 
The p22 intermediate and Cp are nearly identical at the 
sequence level, except for the remaining 10 residue 
N-terminal extension in p22 (19,48,49). This short leader 
sequence contains an influential cysteine residue (Cys-
7), that forms a disulfide bond with Cys61, creating 
distinct quaternary structures that result in two HBV-
related antigens: HBeAg and HBcAg for p17 and Cp, 
respectively (13,50,51). Of note, when denaturing Cp, 
the antigenic region of HBeAg is revealed (49,52). The 
function of HBeAg is not known and it is dispensable for 
infection; HBeAg is found in serum of patients shortly 
after infection and, as such, is used as a marker for active 
viral replication (53). Additionally, there is emerging 
interest in tracking the transcriptional activity of cccDNA 
using the hepatitis B virus core-related antigen (HBcrAg), 
a mixture of HBcAg, HBeAg, and other preC gene 
products (19).
	 Once the critical concentration of Cp has been 
surpassed, 90 or 120 Cp dimers will spontaneously 
self-assemble into T = 3 or T = 4 icosahedral capsids, 
respectively. In the assembled cores, the CpNTD faces 
outwards with the 4HB protrusions giving the capsid 
a spike-like appearance, and the CpCTD is generally 
localized to the interior and is highly flexible. Assembly 
is characterized by sigmoidal kinetics, similar to a crystal 
lattice with the rate-limiting step being the formation of 
a nucleation seed (54). The lag phase is characterized 
by the formation of a trimer of dimers; individual 
dimer-dimer interactions in vitro are weak (~3.5 kcal/
mol), which allows for the thermodynamic editing of 
improperly associated dimers. Once nuclei form, they 
rapidly assemble into icosahedral capsids, as free dimers 
remain. Cp dimers form at least 3 contacts with additive 
association energies that are enough to form stable 
capsids even though individual dimer•dimer interactions 
are weak (54-56). It is important to note that the in vivo 
assembly also can utilize RNA not possible in these 
CpNTD constructs; in purified capsid-like particles, those 
with the CpCTD and ssRNA require harsher denaturation 
conditions (45,47,57). T = 4 capsids are the primary 
result of assembly products (> 90%) and have a diameter 
of ~36 nm, while T = 3 capsids have a diameter ~32 
nm (58). The ratio of these core sizes, as well as the 
kinetics of assembly, are impacted by ionic strength and 
protein concentration with mild conditions favoring T = 
4 and few intermediates (28). In addition to the spiked 
icosohedreon, the capsid is characterized by many holes 
that are permeable to ions, metabolites and inhibitors 
(25,39,58).

Capsid assembly modulators (CAMs)

A class of molecules with curative potential are CAMs 
that bind Cp dimers. Also referred to as core protein 
allosteric modulators (CpAMs) and Capsid Inhibitors 
(CIs), these are an exciting development in the field of 
HBV therapeutics, as NUCs treat but do not cure CHB 
(59). These Cp-targeting HBV antivirals bind to the 
same site but are commonly subdivided into two classes: 
type I CAMs that create aggregated or aberrant capsids 
that are unable to function (CAM-A), and type II CAMs 
that enhance the assembly rates of Cp dimer•dimer 
interactions to make empty cores (CAM-E) (28,60,61). 
As the capsid has numerous roles throughout the 
replication cycle, its misassembly can impact multiple 
steps in acute or CHB infection.

Class I: CAM-A

The first CAM-A molecule described was BAY 41-
4109, belonging to the heteroaryldihydropyrimidines 
(HAP) family with HBV inhibition at submicromolar 
concentrations (33,62,63). Oral administration of BAY 
41-4109 decreased HBV DNA in liver and plasma 
of HBV-transgenic mice, in line with 3TC treatment, 
but also showed a reduction of cytoplasmic HBcAg, a 
phenotype distinct from the NUC treatment (62). The 
observed Cp reduction is a result of proteosome activity 
(63), although an increase in Cp ubiquitylation has not 
been shown following HAP treatment (33). More recent 
studies have found nuclear aggregates of Cp, specifically 
associated with promyelocytic leukemia (PML) nuclear 
bodies, after multiple days of CAM-A (BAY 41-4109 
and BAY 38-7690) but not CAM-E treatment (64,65). 
Shortly after BAY 41-4109 treatment, Cp aggregates 
were primarily cytoplasmic, but associated with nuclear 
envelope (66). Further, it was shown that after infection 
BAY 41-4109–induced Cp aggregates were perinuclear 
and targeted for p62-mediated macroautophagy and 
lysosomal degradation by the host factor STUB1, an E3 
ubiquitin ligase (67). It should be noted that STUB1 is 
a co-chaperone of heat shock protein 70 (HSP70) and 
HSP90 (68), and both are considered proviral factors 
for HBV capsid assembly (67,69,70). Though the BAY 
compounds were not clinically developed, they have 
served as good probes to characterize the CAM-A 
chemotype.
	 Currently, the most promising HAP compounds 
are RO7049389 and GLS4. RO7049389 is currently 
in phase 2 trials (NCT04225715), with phase 1 results 
(NCT02952924) showing infrequent, mild adverse 
events and a reduction of HBV DNA in treatment-naïve 
CHB patients after 4 weeks of CAM-A administration 
comparable to NUC controls (71). Additionally, due to 
the high prevalence of HBV in Asia (3,6), the safety of 
RO7049389 was validated in healthy Chinese volunteers 
in a phase 1 clinical trial (NCT03570658). This showed 
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the compound was well-tolerated in single (600 mg) 
and multiple (400 mg twice daily) doses, and the safety 
profiles were similar between Asian and non-Asian 
healthy volunteers, though with higher plasma exposure 
of RO7049389 observed in the Chinese participants (72). 
The other leading CAM-A molecule currently in phase 2 
trials is GLS4 (NCT04147208), a derivative of Bay 39-
5493, with nanomolar potency and is fairly well-tolerated 
and effective when administered at 120 mg daily in 
combination with 100 mg ritonavir for 28 days (73,74). 
The safety and efficacy of these CAM-A compounds are 
exciting, but their long-term application and antiviral 
resistance remains to be seen.
	 Some other CAM-A molecules include KL060332 
(75), a HAP molecule under a phase 1a trial in China, 
and preclinical compounds JNJ-890 (76), HAP_R01 
(77), and ZW-1847 (78). A unique, non-HAP molecule 
with CAM-A phenotype is Ciclopirox, which inhibited 
HBV at 5 mg/kg in mice (79). Interestingly, ciclopirox 
olamine®, an antifungal agent, was tested for oral safety 
and tolerability as an anti-apoptotic gene suppressant for 
treating hematological malignancies (NCT00990587), 
indicating its safety for use in future trials investigating 
HBV inhibition in clinical trials (79,80).

Class II: CAM-E

Both  CAM-A and  CAM-E b ind  to  the  same 
hydrophobic pocket at Cp dimer•dimer interfaces, but 
the cores formed following only CAM-E treatment 
are noninfectious, vacant icosahedral capsids. CAM-E 
molecules enhance the rate dimer-dimer interactions, 
overcoming the rate-limiting step in assembly, and 
form icosahedral capsids that are devoid of P•pgRNA. 
Unlike the CAM-A class made primarily of the HAP 
chemotype that results in aggregates, CAM-E molecules 
are much more diverse and rapidly lead to native-
like assemblies. Some CAM-E scaffolds include 
phenylpropenamides (PPAs), glyoxamoylpyrroloxamides 
( G L P s ) ,  s u l f a m o y l b e n z a m i d e s  ( S B A s ) ,  a n d 
sulfamoylpyrroloamides (SPAs).
	 One of first reported CAMs and the best studied 
CAM-E molecule is AT-130, which belongs to the PPA 
class (61,81). AT-130 inhibits HBV with submicromolar 
potency in cell culture but has not been tried in clinical 
trials. As the prototypical scaffold for the CAM-E 
chemotype, AT-130 has been shown to increase the 
kinetics of capsid assembly through interactions 
near CpNTD linker and α5 that alter the interface of 
dimer•dimer interactions, as well as distorting the 4HB, 
resulting in intermediates that are primed to assemble 
(82-84). These result in icosahedral capsids without 
the P•pgRNA needed for HBV replication, or partially 
completed assembly intermediates (84,85).
	 Another preclinical CAM-E class that has great 
potential is the GLP class, with the first GLP compound 
patented in 2015 (61,86). GLP compounds are 

exceptionally potent, with the compound GLP-26 having 
nanomolar potency in humanized mice (87). GLP-26 was 
further shown to be well tolerated and highly effective at 
inhibiting HBV in both non-human primate studies and 
primary human cardiomyocytes, indicating safety for 
further investigations (88).
	 Both the SBA and SPA classes are some of the 
most clinically developed CAMs. One of the first 
successful clinical investigations into CAM safety 
was the SBA compound NVR 3-778 (NCT02401737), 
which was tolerated but not as effective as approved 
NUCs and thus was discontinued (28,89). An SBA 
under clinical investigation is JNJ-64530440 (phase 1b, 
NCT03439488) with potent antiviral activity in patients 
with CHB and was well tolerated (90). Additionally, 
the SPA JNJ-6379 (JADE NCT03361956), recently 
reported phase 2 trials results of a reduction in HBV 
DNA and RNA when given in combination with a NUC. 
They note that multiple patients had the T33N mutation 
emerge during monotherapy (91). This underscores the 
likely importance of combination therapy in future HBV 
therapeutics.
	 Some other promising CAM-Es molecules include 
ALG-000184, a potent inhibitor with successful phase 1 
trials (NCT04536337) (92), Canocapavir (ZM-H1505R) 
that was well tolerated (Phase 1b, NCT05470829) 
(93), and GST-HG141 (phase 1, NCT04386915 & 
NCT04868981) (94). Many CAMs have been reported 
and are under investigation in clinical trials without their 
exact CAM phenotype described (Recently reviewed 
(28,55)). Additionally, a novel HBV antiviral class has 
been reported as a cccDNA inhibitor; the molecule ccc_
R08 is hypothesized to target an unknown host factor and 
decreased preexisting cccDNA pools, unlike currently 
reported CAMs (95).

Conclusions

At the present, approximately 3.5% of the world's 
population lives with CHB, though most are unaware 
(3,6). Key to curing CHB is elimination of cccDNA, and 
the currently approved and widely used NUCs suppress 
HBV replication but do not achieve a cure (18,55). Due 
to their ability to clear cccDNA, CAMs that modify Cp 
dimer•dimer interactions have the potential to redefine 
the standard of care for treating HBV infection and 
could subsequently achieve a cure for CHB (11,59). 
The long-term effects of CAM treatment and likely 
emergence of CAM-induced antiviral resistance remain 
to be investigated. However, the progress in CAM 
development and successful investigations into HBV 
capsid biology over the last two and a half decades give 
promise for highly effective and well characterized 
treatments to potentially cure the hundreds of millions 
currently living with CHB.
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