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Introduction

Sarcopenia is a condition introduced by Rosenberg in 
1989, and it refers to a decline in mass of skeletal muscle 
and reduced strength of muscles in the whole body, 
resulting in reduced physical performance. Frequently, 
sarcopenia occurs naturally due to aging. The term 
sarcopenia is derived from the Greek words ''sarx'' 
(muscle) and ''penia'' (loss) (1).
 It has become clear that sarcopenia not only threatens 
the healthy life expectancy of the elderly, but it is also 
associated with various diseases and it may affect their 
prognosis. For example, the survival of individuals 
with solid tumors is worse if the skeletal muscle mass 
is lower (2). Moreover, patients with low muscle mass 
have been reported to be more likely to accumulate 
treatment-related events (3,4). In addition, sarcopenic 
obesity, which refers to a combination of skeletal muscle 
mass weakening and body fat accumulation, has become 
a topic issue in recent years. Patients with sarcopenic 
obesity have a higher prevalence of dyslipidemia than 
those with sarcopenia alone or obesity alone (5). The 
odds ratio of hypertension is equal to 1.5 in patients with 
sarcopenia compared to healthy subjects, and it becomes 

2.08 times higher in patients with obesity and 3.0 times 
higher in patients with sarcopenic obesity (6). The 
odds ratio of metabolic syndrome is 1.98 times higher 
in patients with sarcopenia, and it becomes 7.53 times 
higher in patients with obesity, and 11.59 times higher 
in patients with sarcopenic obesity compared to healthy 
subjects (7).
 One of the diagnostic indicators for sarcopenia is 
skeletal muscle mass. Skeletal muscle mass is assessed 
based on appendicular skeletal muscle mass measured 
by bioelectrical impedance analysis (BIA) or by dual-
energy X-ray absorptiometry (DXA) (8,9). However, 
a high amount of adipose tissue limits the accuracy of 
BIA and DXA methods, as such the estimates of body 
composition in patients with obesity may not be accurate 
(10). Recently, single slices at various reference body 
levels measured by computed tomography (CT) have 
been adopted as a proxy for total muscle tissue volume 
(11,12). In Japan, the visceral fat area (VFA) measured by 
CT at the navel level is used as an indicator for visceral 
fat obesity, a type of obesity associated with a high risk 
of developing lifestyle-related diseases (13). Therefore, 
combined measurement of skeletal muscle mass in 
the trunk and VFA can be used to assess, concurrently, 
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sarcopenia, visceral fat obesity, and sarcopenic obesity.
 An automated rule-based approach to VFA 
measurement on abdominal CT has been introduced 
in 2006. The use of CT images is promising in this 
field as CT can easily distinguish body components 
other than fat (e.g., gas, water, blood, muscles, internal 
organs) by defining the fat range from -30 HU to -190 
HU (14). Moreover, the rapid progress of deep learning 
algorithms, for example since Alexnet in 2012 (15) to 
U-net (16) in 2015, has greatly contributed to substantial 
developments in biomedical image segmentation and, 
to date, automated segmentation of skeletal muscle and 
other body tissues can be easily performed by using deep 
learning algorithms (17-26).
 However, radiation exposure is a major barrier 
to widespread use of CT images and it limits the 
applications of CT to individual transversal images or 
secondary analysis of routine clinical measurements (11). 
In this context, the use of low-dose CT can help reduce 
issues related to human exposure and thus support a 
wider use of CT in diagnostics. However, the use of 
low-dose CT for muscle mass estimation has not been 
fully investigated so far (22). The purpose of this study 
was to assess the performance of deep learning for 
automatic skeletal muscle mass estimation using low-
dose abdominal CT.

Materials and Methods

This study was conducted in accordance with the 
Declaration of Helsinki. Informed consent was obtained 
from each examinee regarding the use of his or her data 
for research purposes. This study was approved by the 
institutional review boards of Hitachi, Ltd. Hospital 
Management Headquarters (approval number: 2010-
6). This study was based on retrospective analysis of 
a primary and a complementary dataset. The primary 
dataset included 11,494 subjects (10,241 men and 1,253 
women; mean age, 57.0 ± 10.1 years), who underwent a 
low-dose abdominal CT at the navel level for metabolic 
syndrome screening at the Hitachi Health Care Center, 
Hitachi, Ltd. One or more images were taken around 
the navel level for each participant (1/2/3/4/5/6/7/8/9/10 
slices = 3,349/3,925/95/0/0/0/0/0/0/1 participants). 
CT scans were performed at a CT dose index volume 

(CTDIvol) lower or equal to 2.5 mGy and an imaging 
range lower or equal to 5 cm, thus the exposure dose was 
lower or equal to 0.19 mSv. The complementary dataset 
was publicly available and was provided by the Cancer 
Imaging Archive (TCIA), funded by the Cancer Imaging 
Program (CIP), a part of the United States National 
Cancer Institute (NCI), and managed by the Frederick 
National Laboratory for Cancer Research (FNLCR) (27). 
This TCIA dataset included 5,801 low-dose abdominal 
CT images, including 2,691 slices from 22 men, 2,800 
slices from 29 women, and 310 slices from 2 subjects 
with unspecified gender. Details of CT imaging settings 
of the two datasets are summarized in Table 1. The main 
dataset used one 5 mm-thick slice per participant, while 
the TCIA dataset used multiple images per examination 
reconstructed in finer slices of 1 to 1.25 mm.
 The primary dataset was divided into Training, 
Tuning, and Internal validation sets and the TCIA dataset 
was divided into Training and Tuning sets. Training and 
Tuning used data taken from January 2017 to September 
2018, while Internal validation used data taken from 
October 2018 to December 2018.
 The slices for measuring skeletal muscle mass in 
the trunk are often measured at the 3rd lumbar spine 
level (11). However, the diagnostic index for metabolic 
syndrome in Japan is based on the cross-sectional area of 
visceral fat on abdominal CT slices at the navel level (13). 
Therefore, we built separate internal validation datasets 
using the upper and lower levels of the iliac crest. Details 
of the training, tuning, and internal validation sets are 
shown in Table 2.
 For the sake of labeling the datasets using ground 
truth information, the psoas major and erector spinae 
muscles in each navel-level CT image were identified 
and manually annotated by a board-certified diagnostic 
radiologist (TN) with over 30 years of experience.
 Our Deep learning model (DLM) was based on 
SegU-net (28-30). SegU-Net is a network structure 
which consists of encoders and decoders, like SegNet 
(31), linking encoder and decoder feature maps like U-Net 
(16), and using arbitrary specific hierarchies and filter 
sizes without cropping encoder feature maps.
 We used the Exponential Linear Unit (ELU) as an 
activation function in the encoder and decoder processing 
and the max unpooling in the decoder processing. The 
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Table 1. CT imaging settings of the datasets used in this study

Items

CT scanner 

Slice thickness
Body part 
Tube voltage 
Tube current range 
Low-dose CT 
Pixel size (mm × mm) 
Use of contrast agent 

Primary dataset

FUJIFILM Healthcare Supria Grande 
(64 rows)
5 mm
Abdomen (navel level)
120 kVp
20 to 225 mA
Yes
(0.489 × 0.489) – (0.978 × 0.978)
No

TCIA dataset

Siemens Sensation (16 rows), Sensation (64 rows), GE LightSpeed 
Pro (16 rows), LightSpeed (16 rows), Philips Brilliance (40 rows)
1 to 1.25 mm
Abdomen (around navel level)
120 to 140 kVp
115 to 280 mA
Yes
(0.607 × 0.607) – (0.920 × 0.920)
Yes



Global Health & Medicine. 2023; 5(5):278-284.Global Health & Medicine. 2023; 5(5):278-284.

(280)

in the decoding process is applied to the pixel position 
showing the maximum value in the Max-Pooling layer in 
the encoding process, and all others are filled with zero. 
The architecture of the DLM used in this study is shown 
in Figure 1.
 Original CT images were converted to normalized 
data of 512 × 512 size. No upper limit on the number 
of epochs was set. The best accuracy generation was 
identified at 863 epochs before overfitting was detected. 
Finally, 5 class regions (0: other, 1: right psoas, 2: left 
psoas, 3: left erector spinae, 4: right erector spinae) were 
defined as am image of 512 × 512 binary format.
 The Dice similarity coefficient (DSC), the cross-
sectional area (CSA) error and the Bland-Altman 
plot were performed to evaluate the segmentation 
performance of the proposed DLM using total and 
individual internal validation datasets from the upper and 
lower levels of the iliac crest.
 The DSC was used to measure the similarity in the 
abdominal skeletal muscle area between the ground 
truth and the DLM outputs. The DSC is an index of 
spatial overlap ranging from 0 to 1. The DSC for the 

ELU is one of the activation functions and solves the 
dying Rectified Linear Unit (ReLU) problem, which 
showed that ReLU neurons become inactive and output 
only 0 for any input. The ELU contains the exponential 
function with the Euler number as the base, and returns 
a value of 0 or less if the input value is 0 or less while 
avoiding the ReLU-like vanishing gradient problem. 
The max unpooling means that the pixel value generated 
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Table 2. Details of the training, tuning, and internal 
validation sets

Items

Primary dataset
     Men
     Women
     total
TCIA dataset
     Men
     Women
     Unknown
     total

Training

7,001
   860
7,861

2,094
2,180
   249
4,523

Tuning

1,762
   204
1,966

   597
   620
     61
1,278

Upper level 
of iliac crest

1,156
  151
1,307

-
-
-
-

Lower level 
of iliac crest

322
  38
360

-
-
-
-

Internal validation

Figure 1. SegU-net architecture. 
Each black frame box corresponds 
to a multi-channel feature map. The 
number of channels is denoted on top 
or bottom of the box. The x-y-size 
is provided at the lower left or upper 
left edge of the box. Red frame boxes 
represent the pooling indices for max 
unpooling operation. The arrows 
denote the different operations.
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combination of the right and left psoas major muscles 
(RPM and LPM) and for the right and left erector 
spinae muscles (REM and LEM) was calculated as 
follows.

 DSC = (2 × (ground truth RPM∩calculated RPM)/ 
(ground truth RPM + calculated RPM) + 2 × (ground truth 
LPM∩calculated LPM)/ (ground truth LPM + calculated LPM) 
+ 2 × (ground truth REM∩calculated REM)/ (ground truth 
REM + calculated REM)+ 2 × (ground truth LEM∩calculated 
LEM)/ (ground truth LEM + calculated LEM)) /4

 The CSA error was also used to evaluate the 
segmentation accuracy of the proposed DLM. The 
lower the CSA error, the higher the segmentation 
accuracy. The CSA error for the combined muscle 
area (CMA) of the bilateral psoas major and erector 
spinae muscles calculated by the proposed DLM was 
computed as follows:

 CSA error (%) = |ground truth CMA - calculated CMA|/
ground truth CMA ×100 (%)

 The Bland-Altman plot was used to evaluate 
agreement between the estimated CMA and the ground 
truth. The mean and standard deviation (SD) of the 
difference between the estimated CMA and the ground 
truth were compared between men and women by t-test 
and F-test, respectively.

Results

The DSC was 0.992 ± 0.012, 0.993 ± 0.009, and 0.991 ± 
0.019 for the total and the individual internal validation 
datasets from the upper and lower levels of the iliac crest, 
respectively. The CSA errors (%) were 0.41 ± 1.89, 0.35 
± 0.96, and 0.62 ± 3.62, respectively. The Bland-Altman 
plots for the CSA agreement between ground truth and 
DLM showed percent differences (mean ± 1.96 × SD) of 
-0.1 ± 3.8%, -0.05 ± 2.0%, and -0.2 ± 7.2%, respectively 
(Figure 2). Although there were statistically significant 
differences in means and SDs of the percent differences 
between men and women for the total (p = 0.006 and 
0.008, respectively) and the upper levels of iliac crest 
(p = 0.0001 and < 0.0001, respectively) because of the 
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Figure 2. Bland-Altman plots for the CSA agreement between ground truth and DLM. (A) Total internal validation datasets, 
(B) Internal validation datasets from the upper levels of the iliac crest, (C) Internal validation datasets from the lower levels of 
the iliac crest. The solid line shows mean difference; the dotted line shows 95% limits of agreement (LOA: mean difference ± 1.96 
× SD of the difference).

                         (A)                                          (B)                                           (C)
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large sample size, the differences in the actual values 
were very small. Figure 3 shows an exemplary case of 
successful segmentation of RPM, LPM, REM, and LEM.
 Figure 4 shows cases with segmentation errors 
derived by the proposed DLM using internal validation 
dataset for the upper level of the iliac crest, where part of 
the muscle was missing or part of the small intestine was 
segmented as muscle.

Discussion

According to the 2019 Consensus of the Asian Working 
Group for Sarcopenia, the skeletal muscle mass index 
of the extremities using BIA and DXA is used for the 
diagnosis of sarcopenia in Asia (32). However, these 
measurements are not able to accurately estimate skeletal 
muscle mass in the trunk due to inherent limitations 
related to the measurement principles (8,9). Abdominal 
CT, as proposed in this study, enables measurement of 
the skeletal muscles of the trunk, and they can potentially 
become an essential technique for improving the 

accuracy of sarcopenia diagnosis.
 However, risks related to radiation exposure represent 
a barrier to widespread use of CT and this imaging 
modality is not included in clinical recommendations for 
sarcopenia diagnosis. In this study, we introduced a DLM 
to assess skeletal muscles from low-dose CT images. The 
International Commission on Radiological Protection 
(ICRP) estimates that in a group of individuals including 
both adults and children, the probability of death due to 
cancer increases by an amount of about 0.5% per 100 
mSv exposure (33), i.e. about 526 times the exposure of 
0.19mSv associated with the abdominal CT scan used in 
this study. Future validation is needed to clarify whether 
the benefits of the use of low-dose CT for screening for 
sarcopenia and sarcopenic obesity outweigh the risks 
associated with radiation exposure.
 Literature studies show that skeletal muscle 
assessment using CT scans at the level of the third 
lumbar (L3) spine is highly correlated with whole body 
skeletal muscle (34,35). However, this method requires 
adjustments on a case-by-case basis according to the 
target population. For example, Vangelov et al. (36) 
suggested to use the level of the 3rd cervical spine as an 
alternative because a malignant tumor confined to the 
head and neck usually does not require an abdominal CT. 
In this study, we found that the use of CT at the navel 
level, typically used for visceral fat area estimation in 
Japan, can provide accurate measurements.
 The SegU-Net algorithm used here is a combination 
of SegNet (31) andU-Net (16). In SegNet, since encoder 
and decoder are connected in series, image details are 
lost in the process of propagating features, and the quality 
of segmentation of the original image is relatively low. In 
U-Net, the central portion of the feature map generated 
in each layer of the encoder is cropped to fit the feature 
map of the corresponding layer of the decoder. In the 
proposed SegU-net, the decoder uses unpooling to 
compensate for data deficiencies in the U-Net in place of 
upconvolution and cropping operations of the U-Net, to 
match coupling between encoder and decoder functions. 
In addition, in this study we also adopted the ELU as the 
activation function from the commonly used ReLu to 
solve the dying ReLU problem.
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Figure 3. Example of good agreement between ground truth and DLM as DSC. (A) An original low-dose abdominal CT at 
navel level, (B) Ground truth segmentation, (C) DLM-derived segmentation of the right psoas major (RPM), the left psoas major 
(LPM), the right erector spinae (REM), and the left erector spinae (LEM) muscles in a woman’s case (60 years old). Green = 
RPM, Yellow = LPM, Pink = REM, Blue = LEM.

Figure 4. Cases with segmentation errors derived by the 
proposed DLM using internal validation dataset for the 
upper level of the iliac crest. (A) Case in which part of the 
muscle was missing, (B) Case in which part of the small 
intestine was segmented as muscle. Green = RPM, Yellow = 
LPM, Pink = REM, Blue = LEM.
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 This study has several limitations. As a result of 
DLM-derived segmentation and validation on internal 
dataset by Ha et al. (19), the DSC was equal to 0.98, 
the CSA error (%) was equal to 1.22 ± 1.08%, and the 
percent difference of the Bland-Altman plots was equal 
to 0.2 ± 3.2%. For our DLM-derived segmentation, 
although DSC and CSA errors were comparable, the 
standard deviation observed using the total validation 
datasets and the validation datasets for the lower levels of 
the iliac crest was equal to 3.8% and 7.2%, respectively. 
Further research is needed to assess the variability of 
the observed results and to assess the distribution of the 
model performance, also including specific investigation 
of the outliers.
 Moreover, the proposed DLM was not validated 
on external validation datasets. It will be important to 
identify further sources of data from different institutions 
to support external validation on varying datasets and 
assess generalization properties.
 Also, in this study we did not measure the quadratus 
lumborum, latissimus dorsi, external oblique, internal 
oblique, transversus abdominis, and rectus abdominis 
muscles. Further studies will be necessary to assess 
accuracy for these muscles.
 Last, but not least, the accuracy of visceral fat and 
subcutaneous fat measurements was not assessed. Moving 
towards future methods able to accurately measure 
sarcopenia, obesity, and sarcopenic obesity, further 
research is required, including specific investigation 
of the accuracy of visceral fat and subcutaneous fat 
measurements.

Conclusions

The proposed DLM was able to automatically segment 
skeletal muscles and assess muscle mass with high 
accuracy using low-dose abdominal CT images. Future 
research will be needed to assess the performance of the 
proposed method in a range of measurement settings and 
patient populations. The proposed DLM, may help build 
future automated methods to simultaneously evaluate 
sarcopenia, obesity, and sarcopenic obesity by measuring 
the navel-level visceral fat area and skeletal muscle mass 
using a single-slice low-dose CT.

Funding: This work was supported in part by Grants-in 
Aid for Research from the National Center for Global 
Health and Medicine (20A3002, 23A3001).

Conflict of Interest: The authors have no conflicts of 
interest to disclose.

References

1. Rosenberg IH. Summary comments (Epidemiologic and 
methodologic problems in determining nutritional status 
of older persons). Am J Clin Nutr. 1989; 50:1231-1233.

2. Shachar SS, Williams GR, Muss HB, Nishijima TF. 
Prognostic value of sarcopenia in adults with solid 
tumours: A meta-analysis and systematic review. Eur J 
Cancer. 2016; 57:58-67.

3. Antoun S, Baracos VE, Birdsell L, Escudier B, Sawyer 
MB. Low body mass index and sarcopenia associated with 
dose-limiting toxicity of sorafenib in patients with renal 
cell carcinoma. Ann Oncol. 2010; 21:1594-1598.

4. Raynard B, Pigneur F, Di Palma M, Deluche E, 
Goldwasser F. The prevalence of CT-defined low skeletal 
muscle mass in patients with metastatic cancer: a cross-
sectional multicenter French study (the SCAN study). 
Support Care Cancer. 2022; 30:3119-3129.

5. Baek SJ, Nam GE, Han KD, Choi SW, Jung SW, Bok AR, 
Kim YH, Lee KS, Han BD, Kim DH . Sarcopenia and 
sarcopenic obesity and their association with dyslipidemia 
in Korean elderly men: The 2008-2010 Korea National 
Health and Nutrition Examination Survey. J Endocrinol 
Invest. 2014; 37:247-260.

6. Han K, Park YM, Kwon HS, Ko SH, Lee SH, Yim HW, 
Lee WC, Park YG, Kim MK, Park YM. Sarcopenia 
as a determinant of blood pressure in older Koreans: 
findings from the Korea National Health and Nutrition 
Examination Surveys (KNHANES) 2008-2010. PLoS 
One. 2014; 9:e86902.

7. Lu CW, Yang KC, Chang HH, Lee LT, Chen CY, 
Huang KC. Sarcopenic obesity is closely associated 
with metabolic syndrome. Obes Res Clin Pract. 2013; 
7:e301-e307.

8. Sanada K, Miyachi M, Tanimoto M, Yamamoto K, 
Murakami H, Okumura S, Gando Y, Suzuki K, Tabata 
I, Higuchi M. A cross-sectional study of sarcopenia 
in Japanese men and women: Reference values and 
association with cardiovascular risk factors. Eur J Appl 
Physiol. 2010; 110:57-65.

9. Tanimoto Y, Watanabe M, Sun W, Hirota C, Sugiura Y, 
Kono R, Saito M, Kono K. Association between muscle 
mass and disability in performing instrumental activities 
of daily living (IADL) in community-dwelling elderly 
in Japan. Archives of gerontology and geriatrics. 2012; 
54:e230-e233.

10. Jensen B, Braun W, Geisler C, Both M, Klückmann K, 
Müller MJ, Westphal AB. Limitations of fat-free mass 
for the assessment of muscle mass in obesity. Obes Facts. 
2019; 12:307-315.

11. Walowski CO, Braun W, Maisch MJ, Jensen B, Peine 
S, Norman K, Müller MJ, Westphal AB. Reference 
values for skeletal muscle mass - Current concepts and 
methodological considerations. Nutrients. 2020; 12:755.

12. Derstine BA, Holcombe SA, Ross BE, Wang NC, Su GL, 
Wang SC. Skeletal muscle cutoff values for sarcopenia 
diagnosis using T10 to L5 measurements in a healthy US 
population. Sci Rep. 2018; 8:11369.

13. Examination Committee of Criteria for 'Obesity Disease' 
in Japan; Japan Society for the Study of Obesity. New 
criteria for 'obesity disease' in Japan. Circ J. 2002; 66:987-
992.

14. Zhao B, Colville J, Kalaigian J, Curran S, Jiang L, 
Kijewski P, Schwartz LH. Automated quantification of 
body fat distribution on volumetric computed tomography. 
J Comput Assist Tomogr. 2006; 30:777-783.

15. Krizhevsky A, Sutskever I, Hinton GE. ImageNet 
classification with deep convolutional neural networks. 
https://proceedings.neurips.cc/paper_files/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf 

www.globalhealthmedicine.com



Global Health & Medicine. 2023; 5(5):278-284.Global Health & Medicine. 2023; 5(5):278-284.

(284)

(accessed September 1, 2023)
16. Ronneberger O, Fischer P, Brox T. U-net: Convolutional 

networks for biomedical image segmentation. https://link.
springer.com/chapter/10.1007/978-3-319-24574-4_28 
(accessed September 1, 2023)

17. Amarasinghe KC, Lopes J, Beraldo J, Kiss N, Bucknell 
N, Everitt S, Jackson P, Litchfield C, Denehy L, Blyth 
BJ, Siva S, MacManus M, Ball D, Li J, Hardcastle N. 
A deep learning model to automate skeletal muscle area 
measurement on computed tomography images. Front 
Oncol. 2021; 11:580806.

18. Cespedes Feliciano EM, Popuri K, Cobzas D, Baracos 
VE, Beg MF, Khan AD, Ma C, Chow V, Prado CM, 
Xiao J, Liu V, Chen WY, Meyerhardt J, Albers KB, Caan 
BJ. Evaluation of automated computed tomography 
segmentation to assess body composition and mortality 
associations in cancer patients. J Cachexia Sarcopenia 
Muscle. 2020; 11:1258-1269.

19. Ha J, Park T, Kim HK, Shin Y, Ko Y, Kim DW, Sung YS, 
Lee J, Ham SJ, Khang S, Jeong H, Koo K, Lee J, Kim 
KW. Development of a fully automatic deep learning 
system for L3 selection and body composition assessment 
on computed tomography. Sci Rep. 2021; 11:21656.

20. Park HJ, Shin Y, Park J, Kim H, Lee IS, Seo DW, Huh 
J, Lee TY, Park TY, Lee J, Kim KW. Development and 
validation of a deep learning system for segmentation 
of abdominal muscle and fat on computed tomography. 
Korean J Radiol. 2020; 21:88-100.

21. Perez AA, Pickhardt PJ, Elton DC, Sandfort V, Summers 
RM. Fully automated CT imaging biomarkers of bone, 
muscle, and fat: Correcting for the effect of intravenous 
contrast. Abdom Radiol (NY). 2021; 46:1229-1235.

22. Pickhardt PJ, Perez AA, Garrett JW, Graffy PM, Zea R, 
Summers RM. Fully automated deep learning tool for 
sarcopenia assessment on CT: L1 versus L3 vertebral 
level muscle measurements for opportunistic prediction of 
adverse clinical outcomes. AJR Am J Roentgenol. 2022; 
218:124-131.

23. Weston AD, Korfiatis P, Kline TL, Philbrick KA, 
Kostandy P, Sakinis T, Sugimoto M, Takahashi N, 
Erickson BJ. Automated abdominal segmentation of CT 
scans for body composition analysis using deep learning. 
Radiology. 2019; 290:669-679.

24. Bridge CP, Rosenthal M, Wright B, et al. Fully-Automated 
Analysis of Body Composition from CT in Cancer 
Patients Using Convolutional Neural Networks. https://
link.springer.com/chapter/10.1007/978-3-030-01201-
4_22#citeas (accessed September 1, 2023)

25. Graffy PM, Liu J, Pickhardt PJ, Burns JE, Yao J, 
Summers RM. Deep learning-based muscle segmentation 
and quantification at abdominal CT: Application to 
a longitudinal adult screening cohort for sarcopenia 
assessment. Br J Radiol. 2019; 92:20190327.

26. Burns JE, Yao J, Chalhoub D, Chen JJ, Summers RM. 
A machine learning algorithm to estimate sarcopenia on 
abdominal CT. Acad Radiol. 2020; 27:311-320.

27. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, 
Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior 

F. The Cancer Imaging Archive (TCIA): Maintaining and 
operating a public information repository. J Digit Imaging. 
2013; 26:1045-1057.

28. Rocha J, Cunha A, Mendonça AM. Conventional filtering 
versus U-Net based models for pulmonary nodule 
segmentation in CT images. J Med Syst. 2020; 44:81.

29. Bianco M, Giri SK, Iliev IT, Mellema G. Deep learning 
approach for identification of H II regions during 
reionization in 21-cm observations. Monthly Notices of 
the Royal Astronomical Society. 2021; 505:3982-3997.

30. Jeon S, Choi W, Park B, Kim C. A deep learning-based 
model that reduces speed of sound aberrations for 
improved in vivo photoacoustic imaging. IEEE Trans 
Image Process. 2021; 30:8773-8784.

31. Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep 
convolutional encoder-decoder architecture for image 
segmentation. IEEE Trans Pattern Anal Mach Intell. 2017; 
39:2481-2495.

32. Chen LK, Woo J, Assantachai P, et al. Asian Working 
Group for Sarcopenia: 2019 consensus update on 
sarcopenia diagnosis and treatment. J Am Med Dir Assoc. 
2020; 21:300-307.e2.

33. Ministry of the Environment Government of Japan. 
BOOKLET to Provide Basic Information Regarding 
Health Effects of Radiation 2nd edition: Chapter 3 Health 
Effects of Radiation: Risks of Health Effects of Radiation. 
https://www.env.go.jp/en/chemi/rhm/basic-info/1st/03.html 
(accessed September 1, 2023)

34. Shen W, Punyanitya M, Wang Z, Gallagher D, St-Onge 
MP, Albu J, Heymsfield SB, Heshka S. Total body skeletal 
muscle and adipose tissue volumes: Estimation from a 
single abdominal cross-sectional image. J Appl Physiol 
(1985). 2004; 97:2333-2338.

35. Mourtzakis M, Prado CM, Lieffers JR, Reiman T, 
McCargar LJ, Baracos VE. A practical and precise 
approach to quantification of body composition in cancer 
patients using computed tomography images acquired 
during routine care. Appl Physiol Nutr Metab. 2008; 
33:997-1006.

36. Vangelov B, Bauer J, Moses D, Smee R. A prediction 
model for skeletal muscle evaluation and computed 
tomography-def ined sarcopenia diagnosis in a 
predominantly overweight cohort of patients with head 
and neck cancer. Eur Arch Otorhinolaryngol. 2023; 
280:321-328.

----
Received April 12, 2023; Revised September 8, 2023; 
Accepted September 22, 2023.

Released online in J-STAGE as advance publication September 
29, 2023.

*Address correspondence to:
Yumi Matsushita, Department of Clinical Research, National 
Center for Global Health and Medicine, 1-21-1 Toyama, 
Shinjuku-ku, Tokyo 162-8655, Japan.
E-mail: ymatsushita@hosp.ncgm.go.jp

www.globalhealthmedicine.com


