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Introduction

In 2023, around 20% of people living with human 
immunodeficiency virus (HIV) were not treating their 
infection (1). If left untreated, HIV infection progresses 
to acquired immunodeficiency syndrome (AIDS), which 
causes over 650,000 deaths annually (1-4). While there 
has been great success in HIV-related healthcare, with 
75% of HIV-positive individuals virally suppressed, 
multiple global regions are underserved in terms of 
healthcare access and availability (1,5,6). Certain 
regions have a large burden of infections, especially 
South and West Africa, which comprise 70% of global 
cases. Other regions have a large proportion of untreated 
individuals, including the Middle East and Eastern 
Europe with approximately 50% untreated (1,4,6-8) 
(Figure 1).
 An emerging and exciting method of treating HIV 
infection is the use of a long-acting antiretroviral 
therapy (LAART) with infrequent doses compared to 
daily pills (4,9-13). LAART can decrease the burden 
of acquiring and taking a daily medication, and it has 
received great patient reception for those switching 
to and initiating LAART to treat or prevent HIV type 
1 (HIV-1) infection (6,9,13-16). The main utility of 
LAART is in adding another tool to patient treatment. 
While it is not expected that all long-acting formulations 

are favored equally within high-incidence populations, 
there is a reported bias in LAART uptake toward highly 
informed individuals and those who practice sex with 
the use of preventative tools (6,14,16,17).
 At present, all HIV-1 treatments are administered 
in combinations of at least two drugs in order to 
prevent the emergence of antiviral resistance. The 
coadministration of multiple drugs decreases the chance 
of antiviral resistance due to the volume of simultaneous 
mutations needed to escape the drugs' activities (18-21). 
It is possible that LAART helps decrease the occurrence 
of antiviral resistance by having unwavering continuity 
of treatment, but this also requires that patients 
have the opportunity to replenish the LAART at the 
recommended interval (10,12,15,22,23).
 Opportunities introduced by LAART include less 
frequent dosing, avoidance of "pill fatigue", oral dosing 
being bypassed (with bioavailability near 100%), 
less adverse events, fewer drug-drug interactions, 
as well as protection of health privacy, avoidance 
of HIV-related stigma, and improved consistency 
of care. Challenges include large limitations due to 
injection volume restrictions, management of missed 
doses, pharmacokinetic considerations, possible 
development of drug resistance, management of drug-
drug interactions, management of serious adverse 
events, and unknown dosing for children and pregnant 
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women. Delivery routes of long-acting antivirals are 
oral, parenteral, and an implant/device with respective 
dosing frequencies of more than one week, more than 
one month, and more than six months (6,22,24).
 Currently, the approved delivery methods for 
LAART are intramuscular (Cabenuva) or subcutaneous 
(Sunlenca) injections (Figure 2). This method of 
administration has been highly effective; however, there 
are complications and limitations to receiving injections 
due to patient anxiety, injection site reactions, the need 
for a professional healthcare worker for administration/
lack of clinical support, high cost, accessibility, and 
difficulty in discontinuation once the treatment is 
injected (10,14-17,22,25). Because of these reasons 
and more, other long-acting treatment options are 
being developed. These include subdermal implants, 
intravaginal rings (IVRs), microneedle array patches, 
long-acting hydrogels, and oral regimens that are dosed 
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Figure 1. Global statistics of HIV-1 infections, treatment, 
and access in 2023. Regional-specific data below, showing 
the total estimated infections (in millions, blue) and percent 
of untreated individuals (red). Data from the UNAIDS 2023 
report, "The urgency of now: AIDS at a crossroads" (1).

Figure 2. Timeline of some important discoveries, approvals, and advancements leading to long-acting HIV-1 therapeutics. 
Compounds are categorized as first-in-class (blue), newer-generation (green), and long-acting therapeutics (red) for treating and 
preventing infection. Chemical structure and delivery method(s) included for each antiviral on the right. Represented inhibitor 
classes are nucleoside reverse transcriptase inhibitor (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), integrase 
strand transfer inhibitors (INSTIs), and capsid-targeting antivirals. Pill and syringe icons designed by Freepik.
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Non-nucleoside reverse transcriptase inhibitors

Most antiretroviral therapy (ART) treatments, including 
those based on RT inhibitors, are administered as once-
daily oral medications. Rilpivirine (RPV), an NNRTI, 
was the first RT inhibitor to be approved in long-acting 
therapies such as Cabenuva. Initially approved in 2011, 
RPV is considered a next-generation NNRTI due to its 
capacity to overcome both resistance and safety concerns 
associated with earlier NNRTIs (36). With its extended 
half-life, RPV allows for monthly dosing using non-oral 
methods (37). Another promising NNRTI, doravirine 
(DOR), marketed as Pifeltro by Merck & Co., Inc., 
received FDA approval in 2018 (38). While currently 
available as a once-daily oral medication, efforts are 
underway to develop its formulation as a long-acting 
injectable (39). VM-1500A, another potent NNRTI, is 
currently in development by Viriom Inc. Elsulfavirine 
(ESV), the prodrug of VM-1500A, was approved in 
Russia in 2017 under the brand name Elpida (ESV 20 
mg) as a once-daily oral medication. ESV has a long 
half-life (40) and is being formulated as a once-weekly 
oral medication and as depulfavirine in a once-monthly 
nanosphere drug formulation (41).

Nucleoside reverse transcriptase inhibitors

Tenofovir, an NRTI, has been used in first-line 
therapy worldwide for the last twenty years. It has 
been formulated as tenofovir alafenamide fumarate 
(TAF), which increases its potency and safety profile. 
This antiviral is currently being used as a once-daily 
oral medication but is in preclinical formulation as 
a long-acting implant for treatment up to six months 
(12). There are currently several implant variations 
being tested, which include a TAF-filled subcutaneous 
silicone implant with a polyvinyl alcohol (PVA) coating 
and orthogonal delivery channels (42), a reservoir-
style biodegradable implant filled with a TAF/oil 
formulation (43), an implant loaded with TAF pellets 
sealed in a polyether urethane tube (44), and poly(ε-
caprolactone) (PCL) reservoir-style implant with a TAF 
core formulation (45-47). Long-acting microspheres are 
also in development (48).

Nucleoside reverse transcriptase translocation inhibitors

ISL is a highly potent NRTTI licensed by Merck & Co. 
This antiviral has the potential to be long-acting due to 
its long half-life and favorable selectivity index. It is 
currently being tested in several clinical trials as a once-
daily, weekly, and monthly oral medication partnered 
with DOR and lenacapavir (LEN) (49-70). Preclinical 
studies of ISL delivered as an injection, implant, and 
micro patch for long-acting therapies are also underway; 
ISL has paved the way for other NRTTI development, 
including MK-8527, a 7-deazadeoxyadenosine analog 

less often. Other delivery strategies have been deployed 
in specific areas, like the ring approved for use in Africa 
but not by the US FDA (25). Of note, adverse reactions 
can be challenging for LAART, especially for irreversible 
administration through subcutaneous injections; 
however, entry periods into the therapy with low and 
oral lead-in doses, when available, can be useful to test 
patient tolerance to the new medication before a long-
term treatment is in place (13,23,25,26).
 Thus far, LAART has been successfully employed 
in clinical trials and as approved medications for HIV-
1 treatment and as a preventative measure for pre-
exposure prophylaxis (PrEP) by targeting viral proteins 
required for an HIV-1 infection: reverse transcriptase, 
integrase, and capsid.

Reverse transcriptase

HIV-1 reverse transcriptase (RT) inhibitors have been 
used to treat infection since 1987, with the first FDA-
approved HIV-1 antiviral zidovudine (AZT). Since the 
late 1980s, several other RT-targeting antivirals have 
been developed and approved (27) (Figure 2). Currently, 
there are five non-nucleoside reverse transcriptase 
inhibitors (NNRTIs) and nine nucleoside reverse 
transcriptase inhibitors (NRTIs) in the US market, 
although only five of these NRTIs are recommended 
(28). Another class of RT inhibitors being developed, 
but not yet FDA-approved, is called nucleoside reverse 
transcriptase translocation inhibitors (NRTTIs). These 
inhibitors include islatravir (ISL, EFdA, or MK-8591) 
and MK-8527.
 All of these classes – NNRTIs, NRTIs, and NRTTIs 
– target HIV-1 RT. This viral enzyme is essential for 
the HIV-1 replication cycle as it is responsible for 
converting the positive-sense, single-stranded RNA 
genome into double-stranded DNA, which is the 
product that is integrated into the host genome (29). 
NNRTIs, NRTIs, and NRTTIs act through distinct 
mechanisms of action, though. NNRTIs are allosteric 
inhibitors that do not target the polymerase active site 
and instead bind to a region called the NNRTI binding 
pocket (NNIBP) located at the base of the thumb of RT. 
When these inhibitors bind, they cause conformational 
changes to the thumb and surrounding areas of RT, 
reducing the ability of RT to polymerize (30,31). NRTIs 
are nucleoside analogs and bind at the polymerase 
active site of RT (29). These inhibitors lack a 3'-OH, 
so once incorporated into the elongating DNA strand, 
another nucleotide cannot be added. Thus, NRTIs are 
termed immediate or obligate chain terminators (32,33). 
Differentially, NRTTIs retain the 3'-OH group, allowing 
another nucleoside to be added (34). Thus, NRTTIs can 
act through multiple mechanisms of action, effectively 
inhibiting the translocation step of reverse transcription 
through immediate chain termination, delayed chain 
termination, or increased misincorporation (35).
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that is currently in phase I/II clinical trials with the 
potential to be used as a once-monthly oral treatment for 
HIV-1 (71-74).

Integrase

HIV-1 integrase protein (IN) is a target of ART 
formulations that contain integrase strand transfer 
inhibitors (INSTIs). Currently, there are five FDA-
approved INSTIs used in HIV-1 treatments – first 
generation: raltegravir (RAL), elvitegravir (EVG); 
second generation: dolutegravir (DTG), bictegravir 
(BIC), and cabotegravir (CAB) (75-77). HIV-1 requires 
integration of virus-encoding nucleic acid into the 
host's genome as part of its replication cycle, and IN 
is responsible for integrating the double-stranded viral 
DNA (vDNA) resulting from reverse transcription of 
the viral positive-sense, single-stranded RNA genome 
(78,79). Hence, the integration process has emerged as 
another ART target, with multiple classes of integration-
targeting compounds arising as potential treatments 
(reviewed in (80)). IN was first discovered within an 
avian retrovirus as a nucleic acid-associating protein that 
later was found to possess both 3'-processing and strand 
transfer enzymatic activities (81-86). During integration, 
IN oligomerizes and complexes with vDNA to form the 
intasome, which contains a conserved integration core 
(CIC) (87). Within the CIC, the IN multimer exposes 3'-
OH groups on the vDNA ends, which can then catalyze 
a strand transfer reaction into the target host DNA 
(88,89). To prevent this from happening, INSTIs contain 
key structural moieties that block host DNA capture 
immediately preceding this step. These antiretrovirals 
have a β-diketo acid-containing a dicyclic or tricyclic 
pharmacophore to chelate Mg2+ ions required to catalyze 
reactions in the IN active site (87). Moreover, INSTIs 
contain a halogenated benzyl group that performs π-π 
stacking with the terminal vDNA base, thus preventing 
its interaction with host DNA (87).
 RAL became the first FDA-approved INSTI in 2007, 
followed by EVG in 2012. In building upon these first-
generation INSTIs, second generation INSTIs have seen 
widespread adoption due to their increased tolerability, 
high barrier to resistance, and low cross-reactivity (75). 
INSTI-containing ARTs typically administer it with two 
NRTIs, but these combinations can alternatively apply 
one NRTI and one NNRTI instead. Of these INSTIs, 
CAB is the only approved long-acting (LA) agent, either 
in combination with RPV LA as an ART (90-92) or on its 
own for PrEP (93,94). CAB is a structural analog of DTG 
and similarly has a high genetic barrier to resistance, 
yet it possesses a much longer half-life than DTG does 
(95,96). It also has potent activity at low concentrations, 
minimal adverse side effects, and little cross-reactivity 
(97-99).
 CAB LA, owned by ViiV Healthcare, was approved 
in early 2021 in combination with Janssen's RPV LA for 

HIV-1 treatment under the trade name Cabenuva (100), 
becoming the first injectable LAART. This came after 
the success of the 2020 phase III Antiretroviral Therapy 
as Long-Acting Suppression (ATLAS) and First Long-
Acting Injectable Regimen (FLAIR) studies; these 
trials confirmed non-inferiority of CAB LA/RPV LA 
against standard ART in treating and suppressing HIV-
1 infection (90,91). Following this, the 2020 phase IIIb 
ATLAS dosed every two months (ATLAS-2M) trial 
established the non-inferiority of bimonthly CAB LA/
RPV LA administration when compared to monthly 
treatment, leading to the approval of a bimonthly 
regimen as well (92,101). In late 2021, CAB LA itself 
was FDA-approved as the first LA injectable PrEP and 
was released under the trade name Apretude (102). This 
announcement resulted from the phase IIb/III HPTN 083 
and phase III HPTN 084 studies showing non-inferiority 
of CAB LA against conventional PrEP treatment 
(93,103).
 INSTIs can be given either as oral drugs or as 
intramuscular injections in the case of CAB LA. INSTI-
containing ARTs are orally administered daily, while 
CAB LA/RPV LA involves a ventrogluteal injection 
once either monthly or bimonthly (104). However, 
before this treatment starts, individuals may be advised 
to undergo an oral lead-in period (OLI) to assess their 
tolerance to CAB and RPV. During OLI, individual 
tablets of CAB (brand name Vocabria) and RPV (brand 
name Edurant) are taken daily for at least four weeks. 
For patients enacting this optional OLI, an immediate 
switch to CAB and RPV initiation injections (trade 
names Vocabria and Rekambys, respectively) takes place 
on the final OLI day; otherwise, the treatment initiation 
period can directly begin at this step.
 Initiation injection schedules for HIV-1 treatment 
differ between patients undergoing a monthly versus 
a bimonthly CAB LA + RPV LA dosing timeline. For 
monthly treatment, initiation injections of CAB LA and 
RPV LA are each given once in the month prior to the 
start of their monthly injection schedule at doses higher 
than during treatment (104). For those on a bimonthly 
schedule, the same monthly initiation injections are 
administered, though instead for two months before 
their bimonthly schedule begins (104). Upon successful 
completion of this period, the patient will then begin 
their prescribed injection schedule (105).

Capsid

The HIV-1 virion contains the HIV-1 capsid, the most 
recent molecular target of an antiviral compound, LEN 
(previously called GS-6207), approved in 2022 for 
highly treatment-experienced (HTE) patients (Figure 
2). LEN targets the HIV-1 capsid protein (CA) and 
inhibits viral replication by perturbing the capsid core 
stability, assembly, and maturation (19,106-112); it was 
developed by Gilead Sciences to disrupt the intricately-
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tuned kinetics of capsid assembly by interacting with 
CA at the phenylalanine-glycine (FG)-binding site 
(3,106,113-119). The mature capsid is essential for the 
replication of HIV-1 in numerous ways, for example 
acting as a reaction vessel for RT activity and as a shuttle 
to carry the viral genome through the cytoplasm and 
to or through the nuclear pore complex (114,116,120-
127). The disassembly or "uncoating" of the capsid core 
needs to be perfectly timed, as early or late uncoating 
decreases viral fitness (106,123,124,128-134). Interfering 
with post-entry and pre-integration events prevents the 
establishment of a viral infection, making the mature 
capsid a great target for preventing or treating HIV-1 
(107,135). In fact, an interim update of the PURPOSE1 
clinical trial (NCT04994509) was recently released, 
stating that twice-yearly LEN was shown to prevent 
HIV-1 infection with 100% efficacy as a PrEP regimen 
in cisgender women in South Africa and Uganda, with 
0 reported infections among 2,134 participants who 
received LEN (136,137). The press release also stated 
that PURPOSE1 is the first phase III HIV-1 prevention 
trial to report zero infections (136).
 Interestingly, the first compound reported to target the 
same site as LEN, the FG-binding site, was PF-3450074 
(PF74). Similar to LEN, PF74 contains an amide group 
and FG scaffold to mimic the FG-containing host factors 
that bind to the same pocket in CA (i.e. Nup153 and 
CPSF6) (3,114-119,131,132,134). Due to these chemical 
bonds, PF74 has an exceptionally short metabolic 
half-life and is quickly degraded by cellular enzymes, 
preventing its further drug development (3,132,138,139), 
although more potent and more stable analogs of PF74 
have been published (139,140). Intriguingly, this amide 
bond and general FG structure is still within the LEN 
molecule, and LEN maintains its exceptionally long-
lasting half-life (3,106,113,141).
 LEN is only approved for use in HTE patients as 
of June 2024, and not yet as a coformulation (109). 
Specifically, the patients approved for LEN treatment are 
already taking an ART regimen that is not successfully 
repressing viral replication. In fact, the CAPELLA 
trial (NCT04150068) with LEN found that most HTE 
participants that had established infections with drug-
resistant viruses were able to initially suppress viremia 
(21 of 24), although multiple LEN-associated resistance 
mutations have been reported shortly after use in CA, 
including M66I and N74D (110,142-144). Multiple 
clinical trials are ongoing to investigate LEN as a form 
of treatment or prevention against HIV-1 with either oral 
formulations or subcutaneous injections in combination 
with BIC, ISL, emtricitabine/tenofovir disoproxil 
fumarate (F/TDF), F/TAF, and broadly neutralizing 
antibodies (bNAbs) (19,108,111,145). LEN is typically 
administered in 927 mg subcutaneous injections in 26-
week increments and/or as 300–600 mg tablets as OLI 
(111,112,145,146). Overall, LEN as a first-in-class 
inhibitor is an exceptionally potent and long-lasting 

antiretroviral, though its apparent tendency to rapidly 
select resistance mutations in CA may be a challenge for 
its future applications.

Conclusions

From many oral doses administered daily and limited 
drug options to non-daily injections and over 30 FDA-
approved antivirals with various delivery strategies, 
the treatment of HIV-1 infection has evolved and is 
becoming increasingly accessible to more patients. 
Many challenges remain to overcome barriers in HIV-
1 treatment and prevention. With more and varied 
treatment options, and numerous clinical and pre-clinical 
trials underway to use LAARTs, clinicians will be more 
able to take patient preferences into account and build 
applicable strategies together to effectively combat HIV-
1. Some of the developed LAART compounds expand 
the existing treatments in antiviral classes like NNRTIs 
and INSTIs; other novel classes of inhibitors have been 
reported with long-acting applications, like the NRTTIs 
and capsid-targeting compounds. As with all antiviral 
compounds, LAARTs create a selective pressure on the 
virus and thus, there are known resistance mutations 
associated with the independent use of a single 
antiretroviral. Therefore, more and alternative strategies 
are required to expand the LAART field and optimize 
combinations of antiviral drugs with applications that 
meet patient needs.
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